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LETTER TO THE EDITOR 

Disorder-induced first-order wetting transitions in two 
dimensions 

Th M Nieuwenhuizen 
Institut fur Theoretische Physik A, Rhein.-Westf. Technische Hochschule Aachen, Templer- 
graben 5 5 ,  5100 Aachen, Federal Republic of Germany 

Received 20 January 1988 

Abstract. The wetting transition of a two-dimensional system with short-range forces is 
studied in the presence of disorder, fully correlated in the direction of the substrate. In a 
solid-on-solid description the row-to-row transfer matrix is of the same type as in random 
one-dimensional systems. Therefore the substrate bound state is still localised when it 
becomes degenerate with a bulk state. This results in an unusual first-order wetting 
transition. The corresponding wetting temperature varies from sample to sample. 

A wetting transition takes place in a binary mixture at coexistence if a macroscopically 
thick layer of one of the phases coats the wall of a container. This transition may be 
continuous or first order. In a three-dimensional system with either short-range or 
long-range forces both types may occur. It is believed, however, that in two-dimensional 
systems with short-range forces the transition is always continuous (Fisher 1985). Kroll 
and Lipowsky (1983) have even shown that it remains continuous when the wall 
potential V ( z ) ,  apart from an attractive short-range part, has an attractive tail which 
decays faster than 1/z2 for large z; when it decays slower than l/z2 the transition 
becomes first order when the tail is repulsive and it is continuous when the tail is 
attractive. The intermediate situation, where V( z )  = - W /  z2 + short-range part, has 
three different regimes: (A) an infinite-order transition for 0 < W, G W; (B) a continuous 
transition with exponents depending parametrically on W for W,G W <  W, with 
W, < 0; (C) a first-order transition with complete breakdown of scaling for W < W, 
(see Lipowsky and Nieuwenhuizen (1988) and references therein). 

The presence of uncorrelated randomness in the bulk (Kardar 1985, Lipowsky and 
Fisher 1986) or in the substrate (Forgacs et a1 1986,1988a) affects the critical properties 
of the transition but keeps it continuous. First-order transitions do occur in two- 
dimensional systems when the interface may jump to the other wall of the container 
(Chalker 1981) or to a widely separated line with additional attractions (Forgacs er a1 
1988b). But if this line contains random impurities, the first-order transition may be 
driven to second order (Forgacs and Nieuwenhuizen 1988). 

It is the purpose of the present work to show that first-order transitions also occur 
in two-dimensional systems with short-range forces, if one assumes the presence of 
disorder which is fully correlated in the direction of the wall. We shall consider the 
restricted solid-on-solid ( RSOS) model, where the interface is described by its integer 
height variable zi 2 0 above the wall position labelled by i = 1,. . . , N, and where jumps 
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larger than unity are forbidden (they cost infinite energy). The most general Hamil- 
tonian that we shall consider is 

N 
H = c ( J J z i - z i + , ~ - u S , i , o + U ( z i ) + h z , ) .  

i = l  

Here J describes the surface tension, U is the wall potential, the set { ~ ( z ) ;  z s  1) 
describes bulk disorder and h is the difference in chemical potential between the two 
phases ( h  = 0 in coexistence). We shall consider the situation where disorder is fully 
correlated in the direction of the wall and uncorrelated in the direction perpendicular 
to the wall, i.e. we assume that the U(Z) are independent random variables. The binary 
case, U( z) = 0 with probability q or U( z )  = u0 > 0 with probability p = 1 - q, could model 
a crystal cut under an angle 4 =tan-' p,  where steps are perfectly straight and have 
random distances with average l/p, the energy cost for the interface to cross a step 
being v0.  The partition sum of this model involves the Nth power of the tridiagonal 
transfer matrix 

T, , , ,=exP(-pU(z) -phz) (S* , , ,+  Y ~ z , , , + I +  YS,,,-l) (z2l) 

TO$ = exP(pu)(So,,f+ YSI,,,) 
(2) 

with y =  exp(-pJ). The free energy is f =  - T In A,,, where A,,, is the largest eigen- 
value of (2). The system (2) actually is similar to a random chain problem, about 
which a lot is known. For instance, with probability one all eigenfunctions are localised 
exponentially (Furstenberg 1963). We first consider the system at coexistence, h = 0. 
For any temperature and for any value of the surface potential U there is a surface 
bound state, with eigenvalue A,. Further there is a continuum of bulk states with 
eigenvalues ( 1  - 2 y )  exp( -pvo)  S A S 1 + 2y  = A B .  In particular, a state with eigenvalue 
A = 1 + 2 y  cos E close to A B  is localised in a strip of width n = T / E  where all U(Z) 
vanish. Narrower strips cannot yield such a large eigenvalue; wider ones allow 
eigenvalues closer to A B .  This phenomenon is nothing but the Lifshitz band-edge 
singularity (Lifshitz 1964). For recent discussions, see Simon (1985) and Nieuwen- 
huizen et al (1986). 

The wetting transition occurs when A, crosses A B ,  at a temperature T = T,. Due 
to disorder the surface bound state remains localised and thus has a finite average 
height (z) at the transition. The bulk state, however, is infinitely separated. Thus the 
transition is first order. The parallel correlation length 511 is inversely proportional to 
the energy gap A, - A B -  t = T, - T and thus q = 1. This is typical for first-order 
transitions in two dimensions but different from the usual higher-dimensional situation 
where tl1 stays finite at a first-order transition. 

It is a property of our model that the critical point varies from sample to sample. 
The reason is that the free energy of the surface bound state strongly depends on the 
realisation of disorder close to the substrate. Because disorder is fully correlated, there 
is no self-averaging in the direction parallel to the wall, as was the case in the systems 
studied by Kardar (1985), Lipowsky and Fisher (1986) and Forgacs et al(1986,1988a). 
The bulk state, on the other hand, always has the same free energy f B =  -T h ( h ~ )  
when the system is infinitely large. Hence, for a given distribution of random bulk 
potentials U(Z) and for fixed values of the surface tension parameter J and wall 
attraction strength U, there is a distribution of wetting temperatures. In figure 1 we 
present a plot of this distribution, obtained by numerically calculating T, for a large 
number of configurations. We consider a typical situation, namely binary distributions 
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Figure 1. Distribution of possible wetting temperatures, related to different realisations of 
disorder for different samples of the ensemble of systems with binary disorder. See the 
text for parameters. 

of the u ( z )  ( u ( z )  = 0 with probability q = a and u ( z )  = uo = 0.25 with probability p = t )  
and J = 0.25, U = 0.4. The support of the distribution is Tw,min = 1.090 833 6 T,s 
T,,,,, = 1.706 947, values for systems with all u ( z )  equal to 0 and uo, respectively. The 
density decays exponentially near its lower and upper edges. The reason is that 
T, = T,+, + AT, results for small AT, from realisations of disorder such that the first 
n rows away from the wall have no disorder ( u ( z )  = 0 for 1 S z s n ) .  The influence of 
impurities will yield AT, - exp(-np), where p - AT, is the localisation length of the 
pure system at this temperature. Realising that this situation occurs with probability 
q" and eliminating n one finds a behaviour exp[-(constant x In q In AT,)/AT,] for 
the density near Tw,mi,, . Near the upper edge one has to replace q by p .  Such exponential 
singularities are typical for Lifshitz singularities. 

We next consider the system off coexistence, h # 0. A bulk state localised in an 
impurity-free strip of width n at height z will have an additional free energy hz for 
small h, resulting i n f =  hz - T ln(1 + 2 y cos v /  n ) .  The largest width n of strips without 
disorder up to height z can be estimated as follows. The probability for occurrence 
of such a strip involves a factor p 2 q n  for finding n successive lines with u ( z )  = 0, in 
between two lines with u ( z )  = uo, and a degeneracy factor z for the location of its 
centre. The estimate follows by equating this probability to unity, hence one solves n 
from zp2q" = 1. Therefore the minimum off  occurs at 

25r'Ty 1 
(1+2y)(ln 4)' hlln hI3' 

Z': (3) 

This essentially linear behaviour deviates from the mean-field behaviour z - In( 1/ h ) .  
Note, however, that the width of the interface n is proportional to log l / h .  It thus 
turns out that this behaviour is dominated by the set of locations zj of larger and larger 
widths nj of impurity-free strips ( nj+l > nj and z,,, > z j ) .  Also this set strongly depends 
on the actual realisation of disorder in the system. 
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It is an interesting question whether on changing h the interface changes its average 
height in a continuous or discontinuous manner, i.e. do layering transitions occur in 
the system off coexistence? A simple and very general answer to this question can be 
given if one goes to a continuum description of the eigenvalue equation of the transfer 
matrix. One thus studies a Schrodinger equation with two degenerate eigenstates, one 
localised near the substrate and one at infinity. When an arbitrarily small field with 
potential hz is added, the state at infinity will be lifted to an average height zo- l /h.  
But then the Schrodinger particle will tunnel from one state to the other. Hence for 
no value of h there will be non-analytic behaviour, i.e. there will be no layering or 
prewetting transitions in the system off coexistence. This argument is expected to apply 
to two-dimensional systems in general. (In systems with uncorrelated disorder one 
first introduces the replica method for having a site-independent transfer matrix.) 

In the model under consideration there will only be real layering transitions in the 
not very physical limit u O + a ,  when it costs infinite energy for the interface to cross 
an impurity line. For finite uo there will still be similar behaviour, but the layers no 
longer grow in a discontinuous way. However, for small h the transitions will be quite 
sharp, because the interface makes ‘jumps’ of the order l / h .  

The unbound interface is extremely rough. To show this we consider a situation 
where the starting point of the interface is pinned somewhere in an impurity-free strip 
of width n >> 1 .  If the interface stays at this height over a length 2Lll >> 1 it will have a 
free energy - 2 T 4  ln(1 f 2 y  cos n-/n) .  Another possibility is that it will go to a wider 
strip (with width n + 6 n ,  an<< n) at distance L, in, say, the first LI1 steps, and remain 
there in the other Lll steps. At finite temperatures the free energy cost can be estimated 
by the kinetic term LIIS(L,/LlI)2, where S is the stiffness; the free energy gain is 
2TLll y r 2  6 n / n 3 .  Thus such a ‘kink’ is favourable up to a height L,  - Lll(ln Lli)-3/2. 
Therefore the interface has a roughness exponent 5 = In LJln LIl = 1-, a result also 
valid in higher-dimensional systems where disorder is correlated in hyperplanes of 
constant height above the substrate. (Because t=  1 one expects S to vanish slowly 
with increasing Lll; this will not influence the value of 5, however.) It follows that the 
interface is much rougher than in the non-disordered situation, where 5 = f, and in 
the problem with uncorrelated randomness, where a = $  (Huse and Henley 1985). 
Actually, a similar relation x - t(ln t ) -”*  has been discussed for the displacement x 
as a function of time of a particle diffusing in a random one-dimensional potential 
(Zel’dovich et a1 1985, Zhang 1986, Engel and Ebeling 1987, and references therein) 
resulting in subballistic hopping behaviour as a result of Anderson localisation. 

A model as studied here could also describe wetting within monolayers adsorbed 
on facets of decagonal quasicrystals (see Lipowsky and Henley 1987). The disorder 
in the bottom layer of such crystals comes from random mismatches of quasiperiodicity 
and these errors are replicated in higher layers by the growth process. It is necessary, 
however, that the wetting temperature be low, because we have assumed disorder to 
be quenched. 

Another realisation could apply to crystals of binary alloys, which occur in layers 
of random thickness. When cut perpendicularly to the direction of the layers, one has 
crystals with facets consisting of perfectly straight strips of random width. Monolayer 
wetting transitions on such substrates are expected to be first order, even when the 
pure compounds would have continuous transitions. The wetting temperature then 
varies from sample to sample. 

We also expect first-order wetting transitions to occur when disorder lines are not 
perfectly straight, but occur, at least, in two types (this would mean v = 0 or vo or v l  
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in the above model for straight disorder lines). One could think of monolayer wetting 
on p * 1 incommensurate structures (see, e.g., Fisher 1985, Rujan et al 1986). In such 
problems the role of random positions of disorder lines in the above model is expected 
to be played by the random type of incommensurability lines. 

Our model is closely related to wetting models on pure quasiperiodic structures, 
such as the Penrose lattice. Henley and Lipowsky (1987) have argued that they may 
also be described by an equation ofthe form ( 2 ) ,  but now with v ( z )  being a quasiperiodic 
function. Two cases have been considered: v ( z )  is a binary sequence with Fibonacci 
structure and v ( z )  is proportional to Harper’s potential, v ( z )  = -A cos ( ~ T z / T ) ,  where 
T = ( 1  +J5)/2 is the golden mean. The case A > A, leads to localised eigenfunctions 
and a smooth interface. In the presence of an additional short-range wall potential 
first-order wetting transitions of the same type as discussed above will appear, if A 
still exceeds A, at T,. In particular, in such quasiperiodic systems prewetting and 
layering transitions also do not occur. 

In conclusion, we have studied a two-dimensional wetting transition in the presence 
of disorder which is fully correlated in the direction of the substrate. This leads to a 
first-order wetting transition. Physical observables, such as the wetting temperature, 
vary from sample to sample. There are no layering or prewetting transitions. Therefore 
the phase diagram differs from the possibilities considered by Pandit et al (1982). 

It is a pleasure to thank Paul Rujan and Reinhard Lipowsky for stimulating discussions, 
and Reinhard Lipowsky also for a critical reading of the manuscript. 
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